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at 0°C. The electron-energy distribution functions for 
Ar-H2 mixtures with E/p=0.5 and E/p= 1.0 at 0°C are 
plotted in Figs. 3 and 4, respectively. The electron 
average energy as a function of the carbon dioxide 
density to argon density ratio for E/p=0.5 and E/p 
= 1.0 is plotted in Fig. 5. The electron average energy 
as a function of the molecular hydrogen density to 
argon density ratio for E/p=0.5 and E/p =1.0 is 
plotted in Fig. 6. 

The energy distribution function for electrons in pure 
argon at E/p =1.0 given in Figs. 2 and 4 is almost 
identical with that published by Barbiere.5 The effect 
of the addition of small amounts of carbon dioxide 

FIG. 5. Electron average 
energy versus ratio of car
bon dioxide density to 
argon density for E/p 
=0.5 V/cm/mm-Hg and 
E/p = 1.0 V/cm/mm-Hg at 
0°C. 

NCOZ/NAT 

« D. Barbiere, Phys. Rev. 84, 653 (1951). 

FIG. 6. Electron average 
energy versus ratio of mo
lecular hydrogen density 
to argon density for E/p 
= 0.5 V/cm/mm-Hg and 
E/p = 1.0 V/cm/mm-Hg at 
0°C. 

or molecular hydrogen to the argon is to lower the 
electron energies. From a physical point of view, the 
electron energies are lowered due to the relatively large 
fractional energy loss per collision that an electron 
surfers in an inelastic collision with carbon dioxide or 
with hydrogen. This lowering of the electron energies 
is more pronounced in the Ar-C02 mixtures than in the 
Ar-H2 mixtures because carbon dioxide can absorb a 
greater fraction of an electron's energy in a collision 
than can molecular hydrogen. It can be seen from the 
figures that one part of carbon dioxide or of molecular 
hydrogen in 10 000 parts of argon is sufficient to 
alter appreciably the electron-energy distribution func
tion and the electron average energy from the values 
they would have in pure argon. 
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Analytic expressions for the ionization and excitation cross sections of atoms by electrons are derived 
using the classical impulse approximation, i.e., by considering only the Coulomb interaction between the 
incident electron and one bound electron. The results obtained are slightly simpler and more self-consistent 
than those obtained in an earlier calculation by Gryzinski. The cross sections are found to be roughly as 
good as those obtained by the Born approximation except in the high-energy limit. The apparent superiority 
of Gryzinski's theory to quantum approximations arises from a subsidiary approximation made in averaging 
the cross section over the initial angular distribution rather than from the kinematic description of the 
bound electrons or the nature of the impulse approximation itself. The Coulomb cross section for transfer 
of energy AE between two particles of equal mass tn, charge e, initial kinetic energies Ei and E2, relative 
velocity F, with an isotropic initial angular distribution is found to be 

F ^ / ^ ( A £ ) = 2 i^ 4 iA£ | - 2 (w^i^2) - 1 / 2 (S 1 / 2 + |8 3 / V|A^I ) , 
where S is the smallest of the four initial and final kinetic energies. For single ionization this cross section 
is found to increase as the 3/2 power of the excess energy above threshold, reach a maximum at about 2J 
times the threshold energy, and decrease as Er1 at high energies. For hydrogenic atoms in any state the 
cross section goes to 5/3 the classical Thomson ionization cross section in the high-energy limit. 

INTRODUCTION 

UNTIL recently there has been no acceptable 
treatment of inelastic electron-atom collisions by 

the classical impulse approximation—that is, by cal
culating the cross sections for energy transfer in binary 

electron-electron collisions, neglecting the field of the 
nucleus and other bound electrons. Some time ago 
J. J. Thomson1 treated inelastic electron-atom col
lisions by considering the Coulomb scattering of the 

1 J. J. Thomson, Phil. Mag. 23, 419 (1912). 
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incident electron by an atomic electron at rest. The 
neglect of the motion of the bound electron is certainly 
not justified at low or intermediate incident energies 
and, surprisingly, yields too small a value for the classical 
impulse approximation cross section in the high-energy 
limit (see below). 

Gryzinski2 has greatly improved the status of this 
approximation by allowing for the motion of the bound 
electrons. He calculates classical cross sections for an 
arbitrary energy transfer to a bound electron from an 
incident electron or heavy particle. From these, ioni
zation cross sections can be deduced by imposing a 
correspondence between the final kinetic energy of the 
target electron and the energy levels of the atom. 
Gryzinski's results also yield a quantum impulse 
approximation to these inelastic cross sections insofar 
as the classical and quantum cross sections for Coulomb 
scattering are the same in the absence of relativistic 
or exchange effects.3 Thus, the significant approximation 
made is not that of classical mechanics but rather that 
of neglecting the effects of any third bodies (the nucleus, 
other atomic electrons) on the motions of the incident 
particle and target electron.4 Gryzinski's cross sections 
are in remarkably good agreement with experimental 
data for a wide variety of inelastic processes. The 
results appear to indicate that the properly calculated 
impulse approximation is superior not only to the 
earlier classical theory, but also to many first- and 
second-order perturbation theories of inelastic electron-
atom collisions. 

What has not been pointed out is that a subsidiary 
approximation made by Gryzinski in averaging over 
the initial angular distribution is responsible for the 
fact that his cross sections are in any better agreement 
with experiment than the Born approximation. This 
second approximation, rather than simplifying the 
forms of the cross sections, actually complicates them; 
and while it does improve the results, it enters in an 
arbitrary fashion which removes much of the self-
consistency of the calculation (e.g., the cross sections 
do not behave properly under time reversal). 

In this paper we derive the "exact" classical impulse 
approximation and obtain a number of simple analytic 
cross sections for ionization and excitation of atoms by 
electrons. These cross sections are generally the same 
at threshold and in the high-energy limit as those 
obtained by Gryzinski but lie somewhat above them 
in the intermediate energy domain. The ionization 
cross section duplicates the Born approximation at low 
energies and falls below it at high energies, whereas the 
excitation cross sections fall below it at all energies. 

2 M. Gryzinski, Phys. Rev. 115, 374 (1959). 
3 R . Akerib and S. Borowitz, Phys. Rev. 122, 1177 (1961); the 

calculations presented in this reference probably are not reliable 
[S. Borowitz (private communication)]. See also W. F. Ford, 
Bull. Am. Phys. Soc. 8, 435 (1963). 

4 Noted by M. J. Seaton, review paper presented at the Third 
International Conference on the Physics of Electronic and Atomic 
Collisions, July 1963 (to be published). 

The form of the classical cross sections obtained 
below thus shows that allowance for the motion of the 
bound electrons does improve the agreement with 
experimental data over that obtained with the Thomson 
formula. These cross sections do not, however, con
stitute any significant improvement over quantum 
approximations except in their greater simplicity. 

DESCRIPTION OF MODEL 

The model for the classical impulse approximation 
for electron-atom collisions consists of neglecting all 
terms in the Hamiltonian except the kinetic energies 
of the target electron E% and the incident electron E% 
and the interaction between them e2/rn. We are left 
with the problem of calculating the cross section for 
the scattering of two electrons in the laboratory frame 
of reference. Rather than the usual differential cross 
section, however, we seek the cross section per unit 
energy transfer AE.b Later we shall interpret collisions 
in which 

AE=E2'-E2<-U, (1) 

where E2 is the final kinetic energy of the incident 
electron and U is the ionization potential of the target 
electron, to result in ionization of the atom. Excitation 
of the state n may be defined analogously, but with 
somewhat less confidence, to occur when2 

Un<-AE<Un+u (2) 

where Un is the total energy of the level n with respect 
to the total energy of the initial configuration of the 
atom. Clearly, this approach is only applicable to 
states resulting from excitation (or de-excitation) of a 
single electron in the initial configuration. 

The total cross section a for the scattering of two 
particles with velocities Vi and V2 may be obtained in 
the form 

Mvi,v*)= I (•*-•!)•*! fp(*)*s, (3) 

where F=|vi—V2I, P(s) is the probability for a col
lision at a separation of the velocities vectors in con
figuration space of s, and the integration is performed 
over a plane in configuration space whose normal is A. 
The cross section for transfer of energy between AE 
and AE+d(AE) is given by 

Vda/d(AE)=\(v2-Vi)-6\ /p(s)6[AE(s)]i25. (4) 

Because the Coulomb field has infinite range and 
because we are treating the collision classically we have 
JP(s)=l for alls. 

5 The calculation is carried out in the laboratory frame only 
because AE is not an invariant under transformation of the 
reference system. 
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FIG. 1. Coordinates for calculation of the Coulomb scattering 
cross section per unit energy transfer in the laboratory frame. 

CALCULATION OF THE COULOMB CROSS SECTION 

The integration of Eq. (4) can be performed over any 
plane in configuration space but it is convenient to 
choose one normal to V2. Then, as shown in Fig. 1. we 
integrate over the x-y plane letting s and a be polar 
coordinates and 0 the angle between the two incident 
velocity vectors. In these coordinates it is readily shown 
that the energy transferred in a Coulomb collision is 
given by 

AE= 
E1—E2—m2ViV2V(vi cosd—v2)(s/2e2) cosa sin0 

l+(m/2e2)2Ws2 

where 

w=[_{vi cos0—v2)
2-\-vi2 sin20 sin2af]1/2. 

From Eq. (4) the cross section becomes 

da (vi,v2) \v2—flicos0| 

d(AE) 
j das 

d(AE)\ 

ds 

(5) 

(6) 

(7) 

Using Eq. (5) to find d(AE)/dS and s(a,AE), and 
integrating over a, we find 

<Mvi,v2) 4rre4 /E1-E2 2EXE2 sin20\ 

d{AE) + AE2 m2V4\AE\\ AE 

for \2AE+E2-E1\ 

< [ (£ 2-£i) 2+4E 1E 2 sin^]1 '2, 

= 0, otherwise. (8) 

This result is essentially equivalent to the cross section 
found by Gryzinski.6 It gives the total cross section for 
collisions with transfer of energy AE in the scattering 
of two beams of singly charged particles of mass m with 
velocities vi and v2 (cos0=z)i'z)2). It should be noted 
that Eq. (8) is completely symmetric with respect to 
the two particles. Asymmetrical cross sections for the 

scattering of either beam are related to Eq. (8) by 

v 2da2(yhy2) -wi<foi(vi,V2) = Vda(yhy2) 
=Nd{AE)/N1N2, (9) 

where N is the total number of collisions per unit 
volume per unit time with transfer of energy AE, and 
Ni and N2 are the number densities of particles 1 and 
2. For an isotropic velocity distribution for either 
particle we have 

Vda(vhv2) 1 r Vda (yhy2) 

d(AE) 4TTJ d(AE) 
-2irsmdde. (10) 

Here the integration over angles must be confined to 
the region for which the condition given in Eq. (8) 
holds. This will include the whole range of 0, O<0<7r if 

EXE2< (Ei-AE)(E2+AE)=E1
/E2 /. (11) 

If EiE2>E/E2
/ the limits on 0 are given by 

cos20<E/E27EiE2. (12) 

The integration of Eq. (10) may be carried out exactly. 
For EiE2<E/E2

/ it yields 

dcr(vhv2) ire* 

d{AE) "(2wE1E2)1/2|AE|3 

X {I AE I (E^+Ei1**- I Ex1*-E^ \) 

+ f ( E x ^ + E ^ 2 - \E^2-E2^
2\)} , (13) 

while in the case EiE2>EiE2 it yields 

Vda(vhv2) 7re4 

d(AE) ""(2wE1E2)
1/2|AE|3 

X{ I AE| ( E / ^ + E / 1 / 2 - l E ^ - E ^ 2 ! ) 

+ f ( E / ^ + E / 3 / 2 - I E/3/2-E2 ,3/21)}. (14) 

Equations (13) and (14) may be combined into the 
more compact form 

Vda(vhv2) ire* / 28 \l'2r 4 8 

d(AE) AE\ 

/ 28 \l*r 4 8 n 
(-7—) 1+-^—r > (15) 
\mEiE2 / L 3 AE J 

where 
8= [Ei,E2,Ei',E2

/]< (16) 

is the smallest of the four ingoing and outcoming 
kinetic energies.7 

IONIZATION CROSS SECTIONS 

To find the ionization cross section we integrate Eq. 
(15) over — U>AE>— E2, where U is the ionization 

6 Our Eq. (8) is the same as Eq. (10) of Ref. 2 when the latter 
result is multiplied by AE/\AE\ as it should be. The equivalent 
to the quantity f(0)dd of Ref. 2 is dQn/4^r in our treatment; hence 
the apparent discrepancy of a factor of 2 is not real. 

7 Equation (15) yields the exact cross section for binary 
Coulomb collisions. By replacing V by (vi2-{-V22)112 before inte
gration over 6, Gryzinski (Ref. 2) obtains an approximate form 
of our Eq. (15) for the case AE<0. 
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FIG. 2. Cross sections for the ionization of hydrogen obtained 
from the classical impulse approximation, the Born approximation, 
and from the measurements of Fite and Brackmann.10 

potential of the target electron. In so doing we ignore 
the effect of the nuclear field on both the incident and 
target electrons except insofar as it determines the 
initial kinetic energy of the target electron E\ and its 
ionization potential. This approximation should be 
good primarily for collisions in which E2, \ AE\^>Ei— 
that is, for close binary collisions of the electrons at 
moderate to high energies (£2>100 eV). Thus, for the 
effective ionization cross section, we have 

W 
1 r-u 

»2 J-E2 

•v VMvhVi) 

d(AE) 
d(AE), (17) 

which, upon integration, becomes 

2xe4 (E2-U): 

o-ioniz(£2) = 
3E2U

2 £i1/2 
, f /<£ 2 <£ 1 +f/ 

•K^pEx+W 3 

"3£2L £/2 E, ̂  

E2>E1+U. (18) 

This result should be compared with the classical 
ionization formula obtained by Thomson8: 

<rThioniz(£2) = (7reVE2) (1/Z7-1/E2), (19) 

which is identical to Eq. (18) if Ei is set equal to zero. 
If both E2y>Ex and U^>Ei there is little difference 
between the cross sections. The latter condition is never 
valid, however; in fact, for most atomic electrons 
E{>U. Taking account of the motion of the bound 
electrons is seen, then, to increase the ionization cross 
section by a factor of about two through most of the 
energy range. In the high-energy limit the Thomson 
cross section should be multiplied by the factor 
(l+2Ei/3U). The behavior at threshold is also 

8 See Ref. 1, or more conveniently M. J. Seaton, in Atomic and 
Molecular Processes, edited by D. R. Bates (Academic Press Inc., 
New York, 1962), p. 374. 

different. Setting Ei=0 yields a cross section which 
increases linearly with the excess energy above 
threshold, while for Ei^O it increases with the 3/2 
power of the excess energy. While neither treatment 
can be expected to yield accurate results in this domain 
it is interesting that the exact classical impulse approxi
mation duplicates the 3/2 power law of the Born 
approximation at threshold while the earlier classical 
theory1 quite fortuitously gives the currently accepted 
linear behavior at threshold.9 

It is worth noting the form of Eq. (18) for hydro-
genic atoms. For ionization of an energy level 
En=Ry/n2 containing a single electron, the cross 
section becomes 

8 W # 5 ( X - 1 M ) 3 / 2 

<rto**(X) = -. , l/n2<X<2/n2 

3 X 
4WW2 5X-S/n2 

3 X(X-\/n2) 
X>2/n2, (20) 

where X=E2/Ry. 
In Fig. 2 we show the classical cross section for 

ionization of hydrogen in the ground state, along with 
the Born approximation and the experimental data of 
Fite and Brackmann.10 Up to about twice the threshold 
energy the classical and Born results agree. The 
classical cross section has a maximum value which is 
4/3 of the Born approximation value, and, while the 
agreement is not bad for intermediate energies, it 
worsens above 300 eV. The best agreement, within 
15%, between the classical theory and experimental 
data lies in the region 100-300 eV; the worst agreement 
is near 30 eV where it is too large by a factor of 2.5. 

EXCITATION CROSS SECTIONS 

The cross section for excitation of a state with total 
energy Un relative to the initial bound state is readily 
found from Eqs. (2) and (18): 

2we* (E2-Uny 
Un<E2<Un+l 

3£2£i1/2 UJ 

2TT*4 r(E2-Uny
2 (E2-Un+1y 

(21a) 

3E2El
l<2l Un un+1

2 J 

Un+xKE^E.+ Un (21b) 

27re*r2El+3Un 2ire*r 

3E2l 2Un
2 

3 (E2-Un+1)^
2 

2(E2-E1) E^Un+f ]• 
E1+Un<E2<El+Un+l (21c) 

9 See Ref. 8; also S. Geltman, Phys. Rev. 102, 171 (1956). 
10 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1141 

(1958). Not shown are several variations of the Born approxi
mation; see S. Geltman, M. R. H. Rudge, and M. J. Seaton, Proc. 
Phys. Soc. (London) 81, 375 (1963). 
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2 ^ / 1 i \ r / i i \ 3-i 

3E2\Un Un+Jl \Un Un+J 21 

E2>Ex+Un+l* (21d) 

In practice almost the whole incident energy spectrum 
is spanned by Eqs. (21b) and (21d) since 
AU^Un+i—Un is usually small. The cross sections 
given depend only on the initial and final energies— 
not on the angular momenta—of the electrons. Implicit 
in the calculation is a sum over all final angular mo
menta allowed by the conservation laws and the limits 
on the energy transfer. It should be noted that this 
classical theory can in principle be extended to dis
tinguish between various final / values12 but it becomes 
quite cumbersome. 

In Fig. 3 we show the cross section for excitation of 
the n=2 levels of hydrogen as given by Eq. (21) as a 
function of the incident electron energy E2. Also shown 
are the experimental results of Fite and Brackmann,13 

the Born approximation,14 and the distorted wave 
calculation of Khashaba and Massey.15 It is seen that 
the classical cross section is too peaked at its maximum 
value—a shortcoming which arises from its too rapid 
falloff at high incident energy [like 1/E rather than 
(1/E) logZT], and from its too slow rise at threshold 

i \ i i 1 1 | r — i — i | i 111 

-BORN APPROXIMATION 

-CLASSICAL IMPULSE 
APPROXIMATION 

XCHANGE DISTORTED WAVE H 

50 100 200 500 
ELECTRON ENERGY (eV) 

1000 

FIG. 3. Total cross sections for excitation of the n — 2 (1=1 or 0) 
state of hydrogen obtained from the Born approximation,14 the 
exchange distorted wave approximation,15 the classical impulse 
approximation, and from the measurements of Fite and 
Brackmann.13 

11 I t is assumed that £ i > # „ + i - Z 7 „ . For Et<Un+i-Un use 
Eq. (21c), omitting the third term, and Eq. (21d). 

12 C.f., Ref. 8, p. 378. 
13 W. L. Fite and R. T. Brackmann, Phys. Rev. 112, 1151 

(1958). 
14 V. M. Burke and M. J. Seaton, Monthly Notices Roy. 

Astron. Soc. 120, 121 (1960). Not shown are the exchange (B.O.) 
or B I I approximations, see P. G. Burke and K. Smith, Rev. Mod. 
Phys. 34, 458 (1962). 

15 S. Khashaba and H. S. W, Massey, Proc. Phys. Soc. (London) 
71,574(1958). 

[as (E2-Un)W rather than {E2-Un)
1^ Below 80 eV, 

however, the order of magnitude of the result is as good 
as that obtained from even second-order perturbation 
theory. 

In Fig. 4 we show the cross section for excitation of 
the n~A level of hydrogen from the 3d level as given 
by Eq. (21) and also as given by the Born approxi
mation.16 No experimental values are available, al
though it can be expected that the comparison would 
be similar to that shown in Fig. 3 for excitation of the 
n= 2 level. 

For higher states it is worthwhile expanding Eq. 
(21d) in powers of 1/n. For a transition n-> n+1, 

(TQ™(n->n+iy 
7^ao2^4/Ry, 

(D 
/ 4 5 4 \ 

XI 1+ + - + • • • ) . E2>En. (22) 

This equation again demonstrates a significant differ
ence between the classical impulse approximation with 
and without allowance for the motion of the bound 
electrons. If we set Ex=0 as in the earlier classical 
theory the excitation cross section is 

<rTh
exc= (Te*/E2) (1/Un- 1/E2), Un<E2< Un+1 

= (7re4/£2) (1/Un- 1/Un+1), E2> Un+1. (23) 

For a transition n —> n+1 where n is large this becomes 

/ R y \ 
CThexc(^ --> n+1) ~Td0

2nH — ) 
\E2/ 

X 
/ 1 . 3 \ 4£„ 

\ 2n* 4w3 I n 
(24) 

Thus this cross section obtained with Ei=0 is smaller 
by a factor of n/2 than that found in Eq. (22) with 
Ei=En. As in the case of ionization the cross section 
is considerably enhanced by including the motion of 
the atomic electrons in the calculation. The vfi de
pendence is more in accord with experiment and the 
Born approximation than the nz dependence. 

Our ionization cross section given by Eq. (20) should 
be compared to our total cross section for excitation to 
all levels nf>n. In the limit of large n, the latter cross 
section is 

<rtotexo= 

27ra0V/Ry\ 

3 \ E 2 / 
• ) , n » l , E2>En, (25) 

which is n2/10 times the corresponding ionization cross 
section obtained from Eq. (20). 

16 G. C. McCoyd, S. N. Milford, and J. T. Wahl, Phys. Rev. 
119, 149 (1960). 
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FIG. 4. Total cross sections for excitation of the n=4 (1—0, 1, 
2, or 3) state of hydrogen obtained from the Born approximation16 

and the classical impulse approximation. 

Also, in the limit of large n9 excitation of the level n 
of hydrogen from the ground state is given by 

a « ( l _>„), (— J £2>2Ry. (26) 
3nz \E2/ 

The n~z dependence for these transitions coincides with 
that for the squares of the dipole matrix elements in 
quantum theory for ny>\ 17—a result which points out 
the similarity between the Born approximation and 
this classical one. 

CONCLUSIONS 

Our motive for performing the above calculations 
has been more to clarify the predictions and point out 
the shortcomings of the classical impulse approxi
mation than to suggest that it is an accurate way to 
obtain cross sections for various inelastic electron-
atom collisions. Due to the lack of any theoretical or 
experimental values for most inelastic cross sections, 
the results of Gryzinski2 have been applied extensively 
in calculation of electron-ion recombination coeffi
cients,18 and have recently been proposed19 as the basis 

17 H. A. Bethe and E. E. Salpeter, Quantum Mechanics of One-
and Two-Electron Atoms (Academic Press Inc., New York, 1957), 
p. 264. 

18 D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc. 
Roy. Soc. (London) A267, 297 (1962); A270, 155 (1963); S. 
Byron, R. C. Stabler, and P. I. Bortz, Phys. Rev. Letters 8, 376 
(1962); E, Ashley, A. Dalgarno, D. Layzer, A. Naqvi, H. E. 
Stubbs, and G. A. Victor, Geophysics Corporation of America 
Technical Report 62-4-A, February 1962 (unpublished). 

19 A. Burgess, Proceedings of the Third International Conference 
on the Physics of Electronic and Atomic Collisions, July 1963 (to 
be published). 

for further ^mclassical calculations of inelastic cross 
sections. They will probably continue to be used until 
such time as the results of better approximate quantal 
calculations are available. 

We have shown here that the classical impulse 
approximation can be expected to fail at threshold and 
in the high-energy limit. It also cannot predict reso
nance effects. Between two and ten times the threshold 
energy, however, these cross sections for excitation or 
ionization are probably accurate to within a factor of 
about two. The other merit of this classical theory is 
that it provides the only analytic estimates, which also 
allow for differences in binding energies, for inelastic 
electron-atom cross sections. Even the Born approxi
mation must be calculated by numerical methods and 
yields cross sections which are significantly better only 
in the high-energy limit. 

A number of modification of the classical impulse 
approximation are possible. We consider Gryzinski's 
results2'7 to be a modification of the above formulas 
which will in general improve the agreement with 
experiment due to the decreased weighting given in the 
total cross section to collisions with long interaction 
times. Of course a large number of similar modifications 
are possible which will also yield better agreement. The 
most physically meaningful of these is to choose the 
initial energy distribution of the target electron to be 
given by p2\^(p)\2dp, where \f/(p) is the Fourier trans
form of the wave function of the target electron (as 
in the quantum impulse approximation3), rather than 
by the expectation value of the kinetic energy. Along 
this line Gryzinski20 has noted that a continuous 
velocity distribution may yield the correct E~x logE 
behavior for the classical ionization cross section at 
high energies. 

Burgess19 has obtained the correct high-energy and 
threshold behavior for ionization by treating distant 
collisions by the impact parameter method, the close 
collisions classically, and including exchange effects. 
There are other extensions of the classical approach 
for which the cross sections obtained here may be of 
some use. Finally we note that Eq. (15) may be applied 
in a straightforward way to find the rate of thermali-
zation of charged particles as well as to find the cross 
sections for inelastic collisions. 

Note added in proof. Some of the results obtained here 
have been found also by V. I. Ochkur and A. M. Pet-
run'kin.21 

20 M. Gryzinski, Proceedings of the Third International Con
ference of the Physics of Electronic and Atomic Collisions, July 
1963 (to be published). 

21 Optika i Spektrosk. 14, 457 (1963) [English transl.: Optics 
and Spectroscopy 14, 245 (1963)]. 


